Classification of Remote Sensing Data with Markov Random Field

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote Sensing Classification Using Fuzzy C-means Clustering with Spatial Constraints Based on Markov Random Field

This paper proposes a new clustering algorithm which integrates Fuzzy C-means clustering with Markov random field (FCM). The density function of the first principal component which sufficiently reflects the class differences and is applied in determining of initial labels for FCM algorithm. Thus, the sensitivity to the random initial values can be avoided. Meanwhile, this algorithm takes into a...

متن کامل

High-Resolution Remote Sensing Data Classification over Urban Areas Using Random Forest Ensemble and Fully Connected Conditional Random Field

As an intermediate step between raw remote sensing data and digital maps, remote sensing data classification has been a challenging and long-standing problem in the remote sensing research community. In this work, an automated and effective supervised classification framework is presented for classifying high-resolution remote sensing data. Specifically, the presented method proceeds in three m...

متن کامل

Spherical Classification of Remote Sensing Data

Real data are often characterized by high dimensional feature vectors. However, such data contain redundant information that may not be beneficial for analysis algorithms. As such, feature transformation arises in related fields of study, including geoscientific applications, as a means to capture the few characteristics that are useful for pattern analysis algorithms. In this study, we investi...

متن کامل

Markov Random Fields for SAR Remote Sensing Applications

This article aims at illustrating the powerfulness of Bayesian and specially Markovian frameworks for different remote sensing applications and in particular for SAR (Synthetic Aperture Radar) image processing. Indeed, the Markovian model is a very convenient way to introduce prior knowledge on the problem to solve. It will first be evoked with examples on the pixel level like filtering, segmen...

متن کامل

Markov Random Field for Road Extraction Applications in Remote Sensing Images

Bayesian methods coupled with Markovian frameworks has several applications in remote sensing images processing, such as the pixel level applications like filtering, segmentation and classification, and the higher level applications like object recognition and organization etc. This article illustrates the powerfulness of Markovian model at two levels for the road extraction problem in remote s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Sciences

سال: 2010

ISSN: 1812-5654

DOI: 10.3923/jas.2010.636.643